Categories
10 11 12 Fach Geographie Klasse Klima Material Physik Uncategorized

Das Treibhausgas CO2 im Laufe der Zeit

CO2 ist das wichtigste anthropogene Treibhausgas und hauptverantwortlich für den momentan
stattfindenden Klimawandel. Hauptsächlich durch die Verbrennung fossiler Energieträger, stieg die atmosphärische CO2 Konzentration seit der industriellen Revolution kontinuierlich an. Im dieser Unterrichtseinheit können Schüler mit Hilfe einer interaktiven Grafik diesen Anstieg nachverfolgen, und die Prozesse die ihn verursacht haben nachvollziehen. 

Jahrgangstufen: 10,11,12

Bearbeitungszeit: 90 min

Fächer : Geographie, Chemie

Leitfrage: Wie können Klimawissenschaftler und Klimaleugner dieselben CO2 Konzentrationsmesswerte untersuchen und dabei zu konträren Aussagen gelangen?

Themen: CO2 Konzentration, Klimaentwicklung, Klimawandel

https://www.iup.uni-bremen.de/carbon_ghg/Clim4Edu/interaktiv/clim4edu_co2ts.html
Categories
7 8 AR-Apps Fach Geographie Klasse Material Uncategorized

Vulkane auf Mars und Erde

In dieser Übungsreihe lernen die Schüler*innen in Einzel- und in Gruppenarbeit Parallelen und Unterschiede zwischen Vulkanen auf der Erde und dem Mars zu erkennen und zu berechnen. Sie vertiefen dabei ihr Gefühl für Maßstäbe und Maßeinheiten. Sie lernen außerdem, wie sie unterschiedliche Objekte maßstabsgetreu und in korrektem Größenverhältnis zueinander zeichnen können.

In der ColumbusEye-App können die Berge des Arbeitsblattes jetzt in 3D betrachtet werden. Als AR-Marker dient die Aufgabenseite des Arbeitsblattes.

Die App “Vulkane auf Mars und Erde” ist Teil der Columbus-Eye-App kostenlos bei Google Play (Part “Berge im Sonnensystem”)

Ziele: Die Schüler*innen…

  • vertiefen ihr Wissen über Maßstäbe und Verhältnisse.
  • verstehen, dass die Erde auch Teil eines größeren Systems ist.
  • lernen die unterschiedlichen Vulkanbauten und ihre Eigenschaften kennen.
  • begreifen den Einfluss der Gravitation.
  • identifizieren Georisiken auf der Erde und Forschungsmöglichkeiten auf dem Mars.
  • haben die Möglichkeit sich über Forschungsmöglichkeiten und -fragen auszutauschen.
Categories
5 6 AR-Apps Fach Klasse Material Mathematik

Berge auf Erde und Mond

Die Übungen “Berge auf Mond und Erde” wurden im Rahmen der Projekte ESERO Germany und “Columbus Eye – Live-Bilder von der ISS im Schulunterricht” an der Ruhr-Universität Bochum entwickelt. Sie sind optimal an die deutschen Mathematik-Lehrpläne angepasst und können sowohl im Unterricht als auch als Hausaufgaben eingesetzt werden. Die Schüler*innen üben die für eine Aufgabenstellung wichtigen Informationen aus einem Text zu gewinnen und berechnen dann wie groß der Mount Everest und der Mons Huygens sind, bevor sie die
beiden Berge miteinander vergleichen und in ein Verhältnis zueinander setzen.

In der ColumbusEye-App können die Berge des Arbeitsblattes jetzt in 3D betrachtet werden. Als AR-Marker dient die Aufgabenseite des Arbeitsblattes.

Columbus-Eye-App kostenlos bei Google Play (Part “Berge im Sonnensystem”)

Ziele: Die Schüler*innen…

  • vertiefen ihr Wissen über Maßstäbe und Verhältnisse.
  • verstehen, dass die Erde Teil eines größeren Systems ist.
  • lernen unterschiedliche Entstehungsarten von Bergen kennen.
  • üben schriftliche Rechenverfahren.
Categories
11 12 13 AR-Apps Fach Geographie Klasse Material

Algenblüte im Trinkwasser

Algenblüten sind eine Bedrohung für die Gesundheit aller, die sich im betroffenen Gebiet aufhalten. In Süßwasserreservoirs gefährden Sie die Trinkwasserversorgung, aber auch den Tourismus und die Fischerei. Ausgelöst werden sie zum einen von landwirtschaftlichen Praktiken, andererseits werden sie von den Folgen des Klimawandels noch verstärkt.

Spezielle Satellitenbilder, sogenannte Hyperspektraldaten, können dabei helfen, verschiedene Algenarten zu identifizieren und zu quantifizieren. In diesem Lernmaterial wird am Beispiel der Rekord-Algenblüte im Eriesee in 2011 dargestellt, wie Algenblüten mit den Hyperspektraldaten des ISS-Sensors HICO untersucht werden. Die Schüler*innen lernen sowohl, die Hyperspektraldaten zu interpretieren, als auch auf deren Basis Maßnahmen für den kurz- und den längerfristigen Schutz der Bevölkerung und Umwelt zu ermitteln.

Die Algenblüte-App ist Teil der Columbus-Eye-App. Erhältlich kostenlos bei Google Play (Part “Algenblüte”)

Ziele: Die Schüler*innen lernen…

• Hyperspektrale Bilder zu beschreiben, zu analysieren und zu interpretieren,
• spektrale Signaturen und Indizes zur Identifikation von Schwebstoffen zu nutzen,
• natürliche und anthropogene Veränderungen von Ökosystemen zu unterscheiden,
• Ökosystem-Veränderungen im Klimawandel zu diskutieren

Categories
10 7 8 9 AR-Apps Fach Geographie Material Physik

Vulkane unterm Radar

Mit dem Radar-Satelliten Sentinel-1 werden aktive Vulkane beobachtet.

Rund um den Erdball gibt es zahlreiche aktive Vulkane, an deren Hängen – oder sogar in deren Kratern – Menschen siedeln. Um Frühwarnprogramme zu verbessern, müssen diese Vulkane ständig beobachtet werden. Neben verschiedensten
Bodenmessungen kommen dabei auch Satelliten zum Einsatz, zum Beispiel Sentinel-1.
Mit seinem Radar-Sensor kann Sentinel-1 nicht nur durch die Wolken blicken, sondern auch kleinste Veränderungen des Bodens aufspüren. So können Bewegungen der aktiven Vulkane, die auf baldige Ausbrüche hindeuten, beobachtet werden. Die Campi Flegrei, oder Phlegräischen Felder, bei Neapel sind noch immer aktiv. Neueste Forschung zeigt, dass sie sich eine Magmakammer mit dem Vesuv teilen – und, dass sich in ihrer Mitte der Boden hebt. Das Arbeitsblatt vermittelt mit der anschaulichen Augmented-Reality-App, wie Sentinel-1-Radar-Daten benutzt werden, um diese Hebung zu verfolgen, und diskutieren die Abwägungen der Bewohner dieser möglicherweise hochexplosiven Region am Beispiel der Geothermie.

Die “Vulkane unterm Radar”-App ist Teil der ColumbusEye-App

App “Columbus Eye” kostenlos im Google Play Store

Ziele:

Die Schüler*innen sollen…
• die Entstehung eines Vulkans beschreiben und verschiedene Vulkantypen darstellen,
• die Funktionsweise von Radarfernerkundung als Wissenschaft einordnen und anwenden,
• Interferometrie-Abbildungen erklären und analysieren,
• Geothermie als erneuerbare Energiequelle erörtern und in einer Diskussion beurteilen.

Bearbeitungszeit: 2-4 Stunden (Modulauswahl) Themen: Geländemodelle, Geothermie, Naturgefahren, Radar, Radar Niveau: fortgeschritten

Autoren: Claudia Lindner, Frederike Krahn

 
 
 
Categories
Fach Geographie Lernvideos Physik Uncategorized

Die spektrale Aulösung

Spektrale Satellitensensoren sehen die Erde grau. Dies liegt daran, dass sie jeden Wellenlängenbereichen getrennt voneinander in so genannten Spektralkanälen aufnehmen. Die spektrale Auflösung, also die Anzahl der Spektralkanäle, ist eine wichtige Eigenschaft von Satellitensensoren. Doch welche spektrale Auflösung sollte ein Sensor haben und warum können nicht alle Bereiche des elektromagnetischen Spektrums gemessen werden?

Die spektrale Auflösung

H 5 P Insert – hello from the saved content!

Categories
Fach Geographie Informatik Lernvideos Material Physik

Die räumliche Auflösung

Wie genau wir unsere Umwelt mit Hilfe von Satelliten beobachten können, hängt maßgeblich von verschiedenen Eigenschaften ihrer Sensoren ab, denn diese entscheiden darüber, wie detailliert Informationen über die Erdoberfläche aufgezeichnet werden. Aber warum verwendet die Fernerkundung nicht einfach nur Sensoren mit einer hohen Auflösung, um uns eine detailgenaue Abbildung der Erdoberfläche zu ermöglichen?

Die räumliche Auflösung

H 5 P Insert – hello from the saved content!

Categories
Fach Geographie Lernvideos Material Physik Uncategorized

Die Welt in Infrarot

Den meisten Menschen ist Infrarot aus dem Alltag ein Begriff. Wärmebildkameras, Infrarotlampen, aber auch Fernbedingungen oder die Körperscanner am Flughafen verwenden Infrarot. Wir Menschen können Infrarot nicht sehen, nehmen es aber teilweise als Wärme wahr. Also was genau ist Infrarot und wie wird es in der Erdbeobachtung eingesetzt?

Die Welt in infrarot

H 5 P Insert – hello from the saved content!

Categories
Fach Geographie Lernvideos Material Physik

Erdbobachtung von der ISS

Ganze 400 km von unserer Erde entfernt, befindet sich die Internationale Raumstation, die ISS. Binnen 92 min umkreist die fußballfeldgroße Station unseren Planeten und ist seit dem Jahr 2000 ständig bewohnt. Sie bietet ein einzigartiges Potential für die Forschung in verschiedensten naturwissenschaftlichen Gebieten – und auch für die Erdbeobachtung! Werfen wir also einen kurzen Blick auf einige wichtige Sensorsysteme, die sich auf der ISS befinden und mit ihren Missionen die Beobachtung und die Erforschung unseres Planeten vorantreiben.

Erdbeobachtung von der ISS

H 5 P Insert – hello from the saved content!

Das Video mit Quizfragen
Categories
AR-Apps Material

Satellitensysteme

Diese App ist eine interaktive Einführung in die spannende Welt der Satelliten: Mikrowellen im Weltraum? Ein Tandem umkreist die Erde? Pflanzen werden hyperspektral beobachtet? Die Internationale Raumstation ISS ist auch noch der größte Erdbeobachtungssatellit im Weltraum?
Die App behandelt eine ganze Reihe sehr unterschiedlicher Satelliten und ihre Einsatzmöglichkeiten. Sie reichen von der Wetterbeobachtung bis hin zum Katastrophenschutz. Jeder hat hier die Möglichkeit, selbst die Erde zu umkreisen und auf seinem Flug die Satelliten zu beobachten, die die Erde ins Visier nehmen. Während sich unter Namen Terra-SAR-X, RapidEye oder den Sentinels nicht jeder sofort etwas vorstellen kann, wird einem anhand von Hurrikanen und Ölteppichen schnell klar, wozu Satellitenaugen gut sein können!
In der App umkreisen die Satelliten die Erde in 3D, aber ihre Bahnen lassen sich auch auf der Weltkarte verfolgen. Beim Antippen der Satelliten oder der Untersuchungsgebiete werden zusätzliche Informationen gezeigt.
Die App ist nicht in ein Arbeitsblatt integriert und benötigt lediglich einen Ausdruck des Markers im Download. Sie kann als Ergänzung zu den anderen Arbeitsblättern verwendet werden, um sich näher über die Satelliten zu informieren, als Einstieg in die Erdbeobachtung im Allgemeinen, oder auch als 3D-/2D-Visualisierung von Orbitalmechaniken von Satelliten.

Die App kostenlos im Google Play Store

Die App kostenlos im Apple Store